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Multistable pulselike solutions in a parametrically driven Ginzburg-Landau equation
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It is well known that pulselike solutions of the cubic complex Ginzburg-Landau equation are unstable but
can be stabilized by the addition of quintic terms. In this paper we explore an alternative mechanism where the
role of the stabilizing agent is played by the parametric driver. Our analysis is based on the numerical
continuation of solutions in one of the parameters of the Ginzburg-Landau equation~the diffusion coefficient
c), starting from the nonlinear Schro¨dinger limit ~for which c50). The continuation generates, recursively, a
sequence of coexisting stable solutions with increasing number of humps. The sequence ‘‘converges’’ to a long
pulse which can be interpreted as a bound state of two fronts with opposite polarities.
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I. INTRODUCTION

A variety of nonequilibrium phenomena such as op
flows in hydrodynamics, thermal convection in pure flui
and binary mixtures, and processes in lasers and nuclea
during the first-order phase transitions, can be modeled
the complex Ginzburg-Landau equations.~For review and
reference, see, e.g., Refs.@1–5#.! Of primary importance are
pulselike solitary wave solutions, which represent localiz
structures widely observed in nonequilibrium systems. I
well known that in the cubic Ginzburg-Landau equation,

ic t1 igc1~12 ic !cxx1~22 ig !ucu2c50, ~1!

solitary waves are unstable for all positivec, g, and realg. In
the g.0 case, however, they can be stabilized by the ad
tion of quintic terms:

ic t1 igc1~12 ic !cxx1~22 ig !ucu2c52~qr1 iqi !ucu4c,

~2!

with positive qi @6,7#. This example suggests that solita
pulses can be stable in a more general class of Ginzb
Landau equations where the zero solution undergoes a
critical ~rather than supercritical! bifurcation to a flat nonzero
solution @7#. In Eq. ~2!, the terms withg andc account for
linear homogeneous and nonhomogeneous losses, re
tively, while the terms withg andqi describe the cubic gain
and quintic dissipation.

The present work deals with another equation of
Ginzburg-Landau type exhibiting the subcritical bifurcatio
viz. theparametrically drivenGinzburg-Landau:

ic t1 igc1~12 ic !cxx1~22 ig !ucu2c5hc* e2ivt. ~3!
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Here, as in Eqs.~1! and ~2!, the positivec and g are the
homogeneous loss and diffusion coefficients, respectiv
The term with an asterisk~indicating the complex conjuga
tion! represents the parametric driver.~The driver’s ampli-
tude h can be chosen positive without loss of generalit!
When c5g50, Eq. ~3! gives the parametrically driven
damped nonlinear Schro¨dinger equation. This special cas
has been studied extensively; in particular, stable solit
waves@8# and their stable complexes@9# were found, and
their bifurcations and supercritical dynamics analyzed@10#.
The objective of the present work is to advance beyond
nonlinear Schro¨dinger limit. We will still keepg50 but al-
low for a nonzero diffusion coefficientc. As we will see,
even such a minimal generalization gives rise to a new p
nomenology of localized solutions which includes the mu
stability of pulses and pulse-front transitions.

Like the Ginzburg-Landau equations with intrinsic gai
the parametrically driven equation~3! arises in a wide range
of physical applications. These include nonlinear Farad
resonance in vertically vibrated layers of water@11–13# and
nonlinear lattices@14#, commensurate-incommensurate tra
sitions in convective systems@15#, waves in nematic and
cholesteric liquid crystals in rotating magnetic fields@16#,
magnetization waves in easy-plane ferromagnet expose
microwave fields@8#, domain walls in the easy-axis ferro
magnet near the Curie temperature@17# and in the easy-plane
magnet in the stationary magnetic field@18#, nonlinear fiber
lines with phase-sensitive amplification and mean-field m
els of degenerate optical parametric oscillators un
continuous-wave pumping@19#, pulsed optical parametric
oscillators with spectral filtering, and lasers with intracav
parametric amplification@20#. In most cases the models con
sidered in literature are either purely diffusive (c5`) @15–
17,20# or purely dispersive (c50) @8,11–13,18,19#. How-
ever, there are situations where it is crucial thatc be finite but
nonzero. One physical phenomenon to which both diffus
and dispersion make essential contributions, is Faraday r
nance in strongly dissipative media such as viscous flu
and granular materials@21#. Another situation where 0,c
,` corresponds to nondegenerate optical parametric o
©2003 The American Physical Society05-1
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lators @22# and fiber-optic telecommunication links; in the
contexts, the term2 iccxx represents spectral filtering in th
spatial or temporal domain, respectively. In fact, the appli
bility of Eq. ~3! with nonzeroc andg may happen to be eve
wider; it is commonly held that this equation provides a ph
nomenological description to a broad range of patte
forming systems@23#.

To study the solitary wave phenomenology introduced
taking the (2 iccxx) term into account, we will use the
diffusion-free limit (c50) as a starting point, and perform
the numerical continuation of analytical solutions availa
in that case, to nonzeroc. The stability of solutions obtained
in this way will also be studied numerically. We will sho
that ‘‘switching on’’ the diffusion gives rise to a sequence
stable multihumped pulses occurring in the vicinity of a c
tain particular value of the diffusion coefficient,clim
5clim(h,g). The closer thec is to clim , the greater is the
number of multihump solutions coexisting at thisc. The so-
lutions with more than five or six humps describe a flat ‘‘p
teau’’ ~wherec is equal to the stable flat nonzero solutio!
sandwiched between two fronts of opposite polarity.

The paper is organized as follows. Sec. II deals mai
with spatially homogeneous solutions. In particular, we sh
that there is a stable flat nonzero solution for sufficien
largec, and this uniform solution can serve as a backgrou
for solitary waves. In Sec. III we use perturbation-type arg
ments to demonstrate that bothc1 andc2 solitons are con-
tinuable inc and in Sec. IV we construct the solutions wi
nonzeroc in the adiabatic approximation. The actual co
tinuation is carried out numerically in Sec. V where we a
examine the stability of the continued solutions. Some ad
tional insight into the bifurcation of stationary pulses
gained in Sec. VI. Finally, Sec. VII summarizes results
this work.

We close this introduction by mentioning a recent pa
@24# which was devoted to the study of the single-hump
solution of Eq.~3!, by means of an averaging technique a
direct numerical simulations. Neither the multistability
pulses nor the pulse-front transitions were dealt with in R
@24#.

II. EXISTENCE AND STABILITY INEQUALITIES

The transformationc(x,t)→e2 ivtc(x,t) casts Eq.~3! in
a ‘‘standard’’ autonomous form,

ic t1~12 ic !cxx12ucu2c2c5hc* 2 igc, ~4!

where we setg50 and rescaledt so thatv51. This is the
representation that we are going to work with in what f
lows.

Equation~4! has three time-independent spatially unifor
solutions, or ‘‘flat backgrounds,’’ for short.~We do not dis-
tinguish between solutions different only in the overall si
here.! One flat solution iscflat50; it will be central for this
work where we are focusing on solutions decaying to zer
infinities. The other two flat solutions are given by

cflat5C6
(0)[~A6 /A2!e2 iQ6, ~5!
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where

A65~16Ah22g2!1/2, 2Q65arccos~6A12g2/h2!.
~6!

Note that these solutions do not depend onc.

A. Stability of spatially uniform solutions

One can easily check that the zero solution is stable
long ash,A11g2, irrespective of the value ofc>0. The
analysis of the flat nonzero solutions is somewhat more
borious.

Linearizing Eq. ~4! about cflat5C6
(0) , and assuming a

perturbationdc }exp@i(vt2kx)# yields the dispersion rela
tion

iv52~ck21g!6 iAZ, ~7!

where

Z5~122A21k2!21A2~A222!2h2. ~8!

~HereA stands forA1 or A2 , depending on which solution
we are linearizing about.! The flat solution is stable iff
Re(iv)<0, i.e., whenZ>2(ck21g)2, for all real k. The
latter condition amounts to an inequality

~11c2!s212~122A21gc!s14A2~A221!>0, ~9!

wheres stands fork2.
Let, first,c5C2

(0) . SinceA2
2 ,1, inequality~9! does not

hold for k50; hence the ‘‘low’’ backgroundC2
(0) is always

unstable.
Let nowc5C1

(0) , the ‘‘high’’ background. The quadratic
expression in Eq.~9! will be positive for alls>0 if either its
two rootss1 ands2 are both real negative or complex.@Note
that we cannot have two real roots of opposite signs as
quadratic’s constant term 4A2(A221) is always positive for
c5C1

(0) .# Whether the roots are real or complex is det
mined by the discriminant of the quadratic~9!, which can be
written as

D5@g224A1
2 ~A1

2 21!#~c2c1!~c2c2!.

Here we have introduced

c65
~2A1

2 21!g62A1A~A1
2 21!~11g2!

g224A1
2 ~A1

2 21!
. ~10!

We need to consider two cases. Assume, first, t
4A1

2 (A1
2 21),g2. In this case the discriminant is negativ

~and hence, the rootss1,2 are complex!, providedc lies in the
interval c2,c,c1 . On the other hand, the rootss1,2 are
real negative in this case ifD >0 and the coefficient in front
of the middle term in Eq.~9! is positive:

c.c0[~2A1
2 21!/g. ~11!
5-2
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MULTISTABLE PULSELIKE SOLUTIONS IN A . . . PHYSICAL REVIEW E68, 056605 ~2003!
Since in the case at hand we have 0,c2,c0,c1 , the
union of the above two ‘‘stable’’ regionsc2,c,c1 and c
.c1 , with the end points included, is simplyc>c2 .

The second case is defined by inequality 4A1
2 (A1

2 21)
.g2. Here we havec1,0,c2,c0 and the quadratic~9!
cannot have negative real roots as the region~11! does not
overlap with the region whereD>0. However, it can have
complex roots—providedc.c2 .

Thus we arrive at a simple stability criterion for the fl
nonzero solutionC1

(0) , valid for all h andg:

c>c2~h,g!, ~12!

with c2 as in Eq. ~10!. Note that the stability threshold
c2(h,g) is always strictly positive. This implies, in particu
lar, that the solutionC1

(0) is always unstable in the casec
50. ~This fact has already been mentioned in the literat
@25#.! Therefore the ‘‘focusing,’’ or ‘‘attractive,’’ damped
driven Schro¨dinger equation@Eq. ~4! with c50] does not
have stable flat backgrounds except the trivial one,c50.
The analysis of localized solutions over flatnonzeroback-
grounds becomes meaningful only within the full Ginzbur
Landau equation, i.e., Eq.~4! with positivec.

B. The flat solutions as backgrounds to solitary waves

No less important is the question of when a flat solut
can serve as an asymptotic value to a localiz
waveform—in other words, when is spatial decay to the
solution possible. To find the corresponding criterion, we
v50 in Eq. ~7!. This results in a quadratic equation

~11c2!s222~2A2212gc!s14A2~A221!50, ~13!

wheres5k2. The spatial decay to a flat background is po
sible unless both roots of Eq.~13!, s1 ands2, are positive.

In the case of theC2
(0) background, the discriminant o

Eq. ~13! is positive while the constant term is negativ
whences1.0 ands2,0. Consequently, the decay toC2

(0)

may occur for all values ofh, g, andc. ~This fact is of little
importance, however, since we have just shown that
background is always unstable.!

In the case of theC1
(0) solution, wemayhave two positive

roots—providedD.0 and c,c0, with c0 as in Eq.~11!.
Following the steps in the preceding section, one can rea
show that this situation occurs only if 0,c,c2 , with c2 as
in Eq. ~10!. Thus thestable constant solutions, defined b
inequality ~12!, can always serve as backgrounds to fro
and pulses. We will come across localized solutions o
nonvanishing backgrounds in Sec. V below.

Finally, to examine the case of the zero background,
set bothA50 andv50 in Eq. ~7!. This yields

~11c2!s212~gc11!s1g22h250, ~14!

where, as before,s5k2. Since the middle term in Eq.~14!
has a positive coefficient, we haves11s2,0, which means
that the situation where boths1 ands2 are positive can neve
occur in this case. Thus the decay to the zero backgroun
possible for allh, g, andc.
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C. The threshold driving strength for pulses

Our last result in this section concerns the range of d
ing strengths which can support localized solutions in
presence of dissipation. Multiplying Eq.~4! by c* and sub-
tracting the complex conjugate of the resulting equat
gives what would be a local conservation law of the num
of particles ifc, h, andg were equal to zero:

i ] tucu21~cxc* 2cx* c!x

5h@~c* !22c2#22igucu21 ic~cxxc* 1cxx* c!.

~15!

Assuming thatc andcx→0 as uxu→` and integrating Eq.
~15! over the real line, we get

d

dtE ucu2dx52E ucu2@h sin~2x!2g#dx22cE ucxu2dx,

~16!

where we have denoted the phase of the complex fieldc
through 2x(x,t): c5ucue2 ix. Let h,g ~and remember
thatc.0). In this case it follows from Eq.~16! that the time
derivative of* ucu2dx remains negative at all times. Hence
t→`, c(x,t)→0 for all x. No stationary, time-periodic, qua
siperiodic, or chaotic solutions, decaying to zero asuxu
→`, can arise ifh,g. We will make use of this simple
criterion in what follows.

III. CONTINUABILITY OF THE TWO NLS SOLITONS

In the limit c50, Eq. ~4! becomes the parametricall
driven damped nonlinear Schro¨dinger~NLS! equation, which
has exact time-independent solitary wave solutions@8,11# of
the form

c6~x,t !5A6e2 iQ6sech~A6x!, ~17!

with A6 andQ6 as in Eq.~6!. The solutionc2 is unstable
for all h and g, while c1 is stable in a certain paramete
region @8#.

The purpose of this section is to show that the solita
pulse solutionsc6 of the NLS equation persist forcÞ0. We
restrict ourselves to stationary solutions (c t50). Writing c
5fe2 iQ, with Q, a constant phase to be chosen later, E
~4! becomes an ordinary differential equation forf:

~12 ic !fxx12ufu2f2~12 ig!f5hf* e2iQ. ~18!

To find out whether solutions available atc50 can be con-
tinued to nonzeroc, we expandf in power seriesf5f0
1cf11c2f21•••, substitute into Eq.~18!, and match like
powers ofc. It is convenient to chooseQ to be Q1 in the
case of the solitonc1 , andQ2 for c2 ; this choice makes
f0 real. Matching terms linear inc and decomposingf1 into
its real and imaginary parts (f15u1 iv), yields an equation

L6S u

v D 5S 0

2f09
D , ~19!
5-3
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where the primes stand for the derivatives inx and the operatorsL6 are defined by

L65S 2]x
21126f0

21h cos~2Q6! 2g

0 2]x
21122f0

22h cos~2Q6!
D . ~20!
g

r-

de

l

e

-

t

l

is

e

the
he

ow,

, it
p-

be

m-

by

d

~The subscripts1 and2 indicate whether we are checkin
the continuability ofc1 or c2 .)

According to Fredholm’s alternative, Eq.~19! has
bounded solutions if and only if its right-hand side is o
thogonal to the kernel of the adjoint operatorL6

† . Trans-
forming to j[A1x and j[A2x in the case of thec1 and
c2 solutions, respectively, the equation for the zero mo
spanning kerL6

† becomes

S L1 0

2g L02e6
D S f

gD 50, ~21!

where f 5 f (j), g5g(j),

e6[2
A6

2 21

A6
2

562
Ah22g2

16Ah22g2
,

and we have introduced the standard Po¨schl-Teller operators
with familiar spectral properties:

L052]j
21122 sech2j, L152]j

21126 sech2j.

The only discrete eigenvalue ofL0 is E050, while the
continuous spectrum occupies the semiaxisE>1. Therefore,
the operator (L02e6) is invertible as long ase6,1 and
e6Þ0. Assuming that the zero background is stable~i.e.,
assuming thath2,11g2), the quantitye1 is indeed less
than one but greater than zero. On the other hand,e2 is
negative.~An exception is the pointh5g, where we have
e650.! Thus we conclude that (L02e6) is invertible ex-
cept in the special caseh5g. ~However, even in this specia
case the operatorL0 is invertible onodd functions because
the eigenfunction sechj associated with the zero eigenvalu
is even.! Consequently,f (j) cannot be equal to zero forh
Þg—otherwise, the bottom equation in Eq.~21! would im-
ply thatg(j)50, too. Fortunately, the operatorL1 does have
a zero eigenvalue, and thereforef (j) can be a nonzero mul
tiple of the corresponding eigenfunction~which is
tanhj sechj.!

Thus in the casehÞg the kernel ofL6
† is spanned by jus

one zero mode, namely,

S f 1

g1
D 5S tanhj sechj

22 g~L02e6!21 ~ tanhj sechj!
D . ~22!

On the other hand, whenh5g, the dimension of the kerne
space is 2. First, the zero mode~22! persists fore650 as the
operatorL0

21 is defined on odd functions. Second, there
another zero mode given by
05660
s

S f 2

g2
D 5S 0

sechj D . ~23!

It is obvious that the vector function~22!, both of whose
components are odd functions ofj, is orthogonal to the
right-hand side of Eq.~19!—which is even. Hence Eq.~19!
is solvable forhÞg. It is also easy to check that the mod
~23! is not orthogonal to the right-hand side of Eq.~19!, and
so the solvability condition isnot satisfied forh5g.

Thus, having started from the two nonlinear Schro¨dinger
solitons, we constructed two one-pulse solutions of
Ginzburg-Landau equation to within the first order in t
small parameterc: c5c61ce2 iQ6(u1 iv)1•••. Conse-
quently, we expect to be able to continue the Schro¨dinger
solitonsc6 into the regioncÞ0 ~provided thathÞg.! This
expectation is born out by results displayed in Sec. V bel
which present an outcome of thenumericalcontinuation of
c6 in c.

IV. ADIABATIC APPROXIMATION

Before attempting the full-scale numerical continuation
is instructive to construct approximate solutions. Our a
proximation will be valid for smallc and exploits the fact
that whenc50, the stationary pulselike solutions of Eq.~4!
have the form

c5a sech~ax!e2 iu, ~24!

wherea5A6 andu5Q6 are constants defined by Eq.~6!.
For c small but nonzero, approximate solutions can
sought by assuming thatc retains the form~24!, but a andu
become slowly varying functions oft.

To obtain an expression forȧ ~the overdot stands for the
derivative int), we substitute ansatz~24! into Eq. ~15!. In-
tegrating overx and using the boundary conditionscx→0 as
uxu→` produces an evolution equation for the pulse’s a
plitude:

ȧ52a~h sin 2u2g2 c̃a2!, ~25!

where c̃[c/3. An equation for the pulse’s phase arises
multiplying Eq. ~4! by c* , adding with its complex conju-
gate, substituting Eq.~24! for c, and integrating overx:

u̇5h cos 2u112a2. ~26!

Fixed points of the system~25! and ~26! correspond to
stationary solutions of Eq.~4!. These can be easily foun
explicitly: Eliminating u from the stationary system
5-4
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h sin~2u!5 c̃a21g, h cos~2u!5a221, ~27!

produces a quadratic equation

~11 c̃2!a412~g c̃21!a2111g22h250 ~28!

with roots

a6
2 5

~12g c̃!6A~h221!c̃222g c̃1h22g2

11 c̃2
. ~29!

The correspondingu6 are defined by their sine and cosine
Eq. ~27!.

It is not difficult to determine when the roots Eq.~29! are
real and positive. We assume that the zero-background s
tion of Eq. ~4! is stable, i.e., the constant term in Eq.~28! is
positive. Hence if the roots are real, they are of the sa
sign, and this sign is opposite to that of the middle term
Eq. ~28!. Therefore we have two positive roots, provided t
discriminant

D5~h221!c̃222g c̃1h22g2[~h221!~ c̃2 c̃1!~ c̃2 c̃2!

~30!

is non-negative, and, at the same time, the inequalityg c̃
,1 holds true. In Eq.~30! we have introduced

c̃1,25
g6hA11g22h2

h221
, ~31!

where the1 corresponds toc̃1 and2 to c̃2.
It is straightforward to verify that for smallh, h2,1, we

have c̃1,0, c̃2,1/g, while for largerh, h2.1, we have
0, c̃2,1/g, c̃1. ~Here we have made use of the inequal
h.g; as proved in Sec. II C, no stationary localized so
tions exist forh,g.! Therefore, the region ofc values where
the roots of Eq.~28! are positive, is given by the inequalit
c̃, c̃2(h,g)—for all h.

Thus we conclude that the adiabatic equations have
stationary points forc,3c̃2(h,g), and none forc.3c̃2. We
complete the adiabatic analysis by classifying their stabi
and bifurcation.

Linearizing Eq.~26! about the stationary points and a
suming small perturbations of the formda5C1e2lt anddu
5C2e2lt, yields a characteristic equation

l21~g1ca2!l12ha2 cos~2u!

2h sin~2u!@h sin~2u!2g2ca2#50.

Since the coefficient in front of the middle term in this equ
tion is positive, either its two roots are complex with neg
tive real parts, or we have two real roots, of which one
negative. The case where the second root is positive~and
hence the fixed point is unstable! occurs if the constant term
is negative. Conversely, if the constant term is non-negat

2ha2 cos~2u!2h sin~2u!@h sin~2u!2g2ca2#>0,
~32!
05660
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the fixed point is stable. Simplifying Eq.~32!, we get the
stability condition in the form

a2>
12g c̃

11 c̃2
.

Comparing this to the expressions fora6 in Eq. ~29!, we
conclude that for allc, h, and g, the points (a1 ,u1) and
(a2 ,u2) are a stable node and a saddle, respectively.

The two fixed points come into being through a sadd
node bifurcation which occurs as the diffusion coefficienc

is decreased pastc53c̃2 for the fixedh and g or, alterna-
tively, as the driving amplitudeh is increased for the fixed
dissipation coefficientsc andg. One can easily find the bi
furcation value ofh, at which two complex roots of the qua
dratic equation~28! converge on the positive real axis.~Here
we are assuming thatc̃ is smaller than 1/g.! Writing the
discriminant~30! as

D5~ c̃211!Fh22
~ c̃1g!2

c̃211
G ,

the threshold driving strength is given by

had5
c̃1g

Ac̃211
, ~33!

where the subscript ‘‘ad’’ serves to remind that Eq.~33! was
obtained in the adiabatic approximation. It is important
emphasize that this formula is valid only for smallc̃.
Equivalently, expression~31! for the turning pointc̃2 is valid
only for h close tog.

V. NUMERICAL CONTINUATION AND STABILITY
ANALYSIS

In this section we describe the bifurcation diagram o
tained by the numerical continuation of the solitonsc6 in
the parameterc. The diagram is presented in Fig. 1 and d
plays the Sobolev norm of the solution,

ic i5AE ~ ucxu21ucu2!dx,

as a function ofc.

A. The method

For stationary solutions,c5c(x), Eq. ~4! reduces to an
ordinary differential equation

~12 ic !cxx12ucu2c2~12 ig!c5hc* . ~34!

For the numerical continuation of solutions to Eq.~34! we
utilized theAUTO97 software package@26#. The infinite line
was approximated by a finite interval (2L,L), with L
5100, and the boundary conditionsc(6L)50. The toler-
5-5
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ance of the computation@the grid norm of the difference
between the right- and left-hand sides of Eq.~34!# was set to
be 1027.

The solid and broken curves in Fig. 1 represent stable
unstable branches, respectively. The stability was exam
by linearizing Eq.~4! about the corresponding stationary s
lution. Choosing the small perturbation in the for
dc(x,t)5@u(x)1 iv(x)#elt, with realu andv, we arrive at
an eigenvalue problem

HS u

v D 5lJS u

v D , ~35!

where

H5S 2]x
2111h26R 222I 2 2c]x

21g24RI
c]x

22g24RI 2]x
2112h22R 226I 2D

and

J5S 0 21

1 0 D .

TheR andI are the real and imaginary parts of the solutio
c5R1 iI. We solved the eigenvalue problem by expand
u and v over 500 Fourier modes in the interv
(2100,100).

B. Continuation and stability

The continuation inc was performed for fixed values ofh
andg. We selectedg50.5 andh50.8; for theseh andg the
nonlinear Schro¨dinger solitonc1 is stable@8#. Before pro-
ceeding to thec1 soliton, however, we briefly deal with th
c2 case. In agreement with predictions of Sec. III, the so

FIG. 1. The bifurcation diagram displaying the Sobolev no
versus the diffusion coefficient, for the solitary pulse obtained
the continuation of the stable solitonc1 in c. The continuation
starts from a point on the (c50) axis, marked by an open circle
The arrows indicate the directions of continuation and are o
added for reference purposes. Solutions at points marked by
black dots~a!, ~b!, and ~c! are shown in Fig. 2. The solid line
correspond to stable and dashed curves to unstable branches.
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ton c2 was found to persist both forc,0 and c.0. We
were, in fact, able to continue it indefinitely without encou
tering any obstacles in both directions. Asc→`, the width
of the localized solution of Eq.~34! grows and the solution
tends to fg,h(x/Ac), where fg,h(X) stands for a pulse-
shaped solution of equation

2 ifXX12ufu2f2~12 ig!f5hf* . ~36!

In a similar way, as c→2`, the solution tends to
f2g,h* (x/A2c). When continued toc.0, the pulse re-
mained unstable for allc, with a single positive eigenvalue in
its spectrum.~As for the negative-c region, all solutions in
that region area priori unstable against continuous spectru
perturbations with arbitrarily large Rel.!

The continuation of thec1 soliton proved to be more
rewarding from the stability viewpoint. The correspondin
bifurcation diagram is displayed in Fig. 1. As with the solito
c2 , thec1 persists both forc.0 andc,0—in agreement
with Sec. III. Continuing into thec.0 region, we have
found that the solution gradually changes its shape, with
hump in the imaginary part splitting into two@see Fig. 2~a!#.
At c50.7 the branch turns back~Fig. 1!. Note that the turn-

ing point occurs forc much smaller than 3c̃251.04, the
saddle-node bifurcation point predicted by the adiaba
analysis. What is more important, thec1 solution turns not
into the c2 ~as the adiabatic approach predicted! but into
some other solution which has two well-separated hump
the imaginary part. The discrepancy is not surprising as
adiabatic approximation is valid only for smallc, where the
shape of the solution is still well reproduced by the sing
hump constant-phase trial function~24!. In the entire stretch
betweenc50 and the turning point, the solution remain
stable.

Continuing this branch further, additional humps a
added as the solution passes a sequence of turning po
Each pass of a turning point results in the creation of a n
hump in the middle of the solitary wave. As we move alo
the branch, the distance between successive turning po
~the difference between the corresponding values ofc) be-
comes smaller and the new humps come with smaller am
tudes. As a result, a long plateau is formed which keeps
expanding as we continue the branch@Fig. 2~c!#. The broad-
ening plateau accounts for the vertical segment of the cu
in Fig. 1. If the bifurcation parameterc is seen as a function
of the Sobolev normic i ~that is, if we turn Fig. 1 by 90°),
the curvec(ic i) has the form of a decaying oscillation.

The stability of the solution alternates at each succes
turning point. These changes are due to a single real eig
value which moves back and forth through the origin on
real line.~At the turning points the eigenvalue is right at th
origin, of course.! The lengths of the incursions this eige
value makes into the positive and negative real lines decre
with each new turning point until the eigenvalue becom
indistinguishable from zero. Therefore the branch becom
~neutrally! stable sufficiently ‘‘high up’’ inic i in Fig. 1 ~i.e.,
for sufficiently long plateaus!.

y
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Despite the fact that negative values of the diffusivityc
are not physically meaningful, we did continue toc,0—in
the hope that the resulting branch would reach a turn
point and then return to the positivec semiaxis~which it did

-0.4

0

0.4

0.8

1.2

-30 -20 -10 0 10 20 30

x

(a)

-0.4

0

0.4

0.8

1.2

-30 -20 -10 0 10 20 30

x

(b)

-0.4

0

0.4

0.8

1.2

-30 -20 -10 0 10 20 30

x

(c)

FIG. 2. ~a!–~c! Solutions at the corresponding points in Fig.
Solid line: real part; dashed line: imaginary part.
05660
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indeed do!. The resulting branch is also shown in Fig. 1. A
we move into the regionc,0, the c1 solution gradually
develops into a three-humped state and when the curve
turns toc50, we have a complex of thec (212) type, with
a large separation between the individual solitons.~This
complex of three solitons of the parametrically driven no
linear Schro¨dinger equation was previously found in Re
@9#.! Crossing into thec.0 region, the centralc1 soliton in
the complex transforms as if it did not have thec2 solitons
attached to its flanks. As a result, thec.0 portion of the
correspondingic(c)i curve has virtually the same shape
the curve resulting from the continuation ofc1 to the region
c.0; the only difference is that the curve emanating out
c (212) is shifted upwards relative to the curve emanati
out of c1 . Similar to the continuation ofc1 , the continu-
ation ofc (212) goes via a series of turning points, with ea
pass of the turning point resulting in the creation of anot
hump in the middle of the central region which become
long plateau. The lateralc2 solitons are not affected by thi
process. The linearized spectrum is the union of the spect
of the long pulse described in the previous paragraph
spectra of twoc2 solitons. In particular, it includes two
positive real eigenvalues contributed by thec2’s and so the
entire branch resulting from the continuation ofc (212) is
unstable. We disregard it in what follows.

The plateau arising in the final stage of continuation of
two branches shown in Fig. 1, is nothing but an interval
the x axis wherec equalsC1

(0) , the flat nonzero solution
given by Eq.~5!. The corresponding value ofc, clim50.54,
falls within the regionc>c2 where the backgroundC1

(0) is
stable. Herec2(g,h) is given by Eq.~10!; in particular,
c2(0.5,0.8)50.224. In the language of phase transitions,
long pulse shown in Fig. 2~c! can be seen as a ‘‘bubble’’ o
one stable phase in another one.

C. The bound state interpretation

The long pulse can also be interpreted as a bound sta
two fronts interpolating between different stable bac
grounds,c50 andc5C1

(0) . This intuitively appealing idea
can be put on the quantitative footing by considering
spatial decay of perturbations to the flat backgroundC1

(0) .
Indeed, consider the turning point separating the sec

stable branch from the first unstable branch in Fig. 1.~This is
a point with coordinatesc50.37 andic i52.48. Note that
we are only considering branches obtained by the contin
tion of the solitonc1 to positivec. Branches that start by
continuingc1 to negativec first are disregarded here.! It is
at this point that the modulus squared ofc(x) becomes
double humped; before that, that is on the branch that le
to this point~the first unstable branch!, the functionuc(x)u2

remained single humped despite the double-humped im
nary part. Lettingh50.8, g50.5, andc50.37 we check that
4A1

2 (A1
2 21).g2 and hence, according to Sec. II A, th

quadratic Eqs.~9! and ~13! have two complex roots,k25sr
1 isi and (k2)* . Therefore the wave numberk is complex as
well: k5kr1 ik i . Solving Eq.~13! for s we obtain, subse-
quently,
5-7
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kr5
1

A2
~sr1Asr

21si
2!1/251.36, ki5

si

2kr
50.19. ~37!

~We have chosen positive values forkr andki here.!
For c near the turning point in question, the plateau h

not yet formed between the two humps and so they can
crudely thought of as two overlapping NLS-like soliton
with oscillations on their adjacent~i.e., partner-facing! tails.
The bound state arises when one solitary wave is trappe
the potential well formed by the oscillatory tail of its partne
Making use of the potential of interaction of two attracti
NLS solitons@27#, Ueff}exp(2kiz)cos(kr z) ~wherez stands
for the distance between the two humps!, and taking into
account thatki /kr!1, we obtain a rough estimate for th
separation:z5p/kr . Substitutingkr from Eq. ~37!, the ap-
proximate formula givesz52.31. This is in qualitative
agreement with the numerically found valuez52.77.

Moving further along the~second stable! branch, the pla-
teau appears and the two humps can no longer be app
mated by the NLS-like solitons. This makes the above e
mate invalid. The solution can still be regarded as a bo
state of two fronts but this time, in order to calculate t
characteristic width of the pulse one would need to know
full profile of the front.

We conjecture that for givenh and g, a free-standing
stationary front exists just for a single value ofc, namely,
c5clim . ~We are planning to verify this conjecture in futu
publications.! On the other hand, stable and unstable bou
states of fronts exist in a finite interval ofc values containing
c5clim as an internal point. It is fitting to note here th
similar pulse-to-front transformations occur also in the ot
system featuring the subcritical bifurcation, viz. the cub
quintic Ginzburg-Landau equation with internal gain@28#.

VI. THE h VERSUS c DIAGRAM

As we mentioned in the preceding section, there is a
tain discrepancy between the adiabatic analysis and num
cal continuation. Numerically, thec2 soliton was found to
be continuable all the way toc51` whereas the adiabati
approach predicted the existence of a turning point ac

53c̃2, where thec2 should have merged with thec1

branch. As for thec1 solution, we found that it turns into a
pulse with the double-humped imaginary part~and not into
thec2 branch as suggested by the adiabatic approximati!
In order to shed some light on the possible source of
discrepancy we performed the numerical continuation of
pulsec2 in h, for several fixed values ofc. Here, by thec2

we mean the pulse solution which results from the conti
ation of the Schro¨dinger c2 soliton to positivec, for some
fixed large value ofh ~in our case forh50.8.! Having ob-
tained this starting-point solution for several values ofc, we
then continued it inh, from h50.8 to smallerh. The stability
of the arising solutions was examined by computing eig
values of the operator~35! at sample values ofh.

In each case considered, thec2 branch was found to turn
into the c1 solution ash reached the threshold valuehcr
5hcr(g,c). @That is, for h.hcr there are two branches o
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solutions whereas forh,hcr , there is none; see Fig. 3~a!.#
The entirec2 branch is unstable; the single positive re
eigenvalue moves to the negative semiaxis as the branc
continued past the turning point. Continuing the arisingc1

branch to largerh, we reach another turning point ath
5h2, where thec1 solution transforms into a pulse with th
double-humped imaginary part. The valueshcr and h2 are
shown in Fig. 3~b! as functions ofc ~for the fixedg50.5).
As c→`, the differenceh22hcr decreases but remains no
zero. We verified this by computinghcr andh2 for Eq. ~36!
which pertains toc5`. In the same plot we display th
function ~33! which gives the adiabatic approximation to th
curve hcr(c). ~Note that for smallc, there is a good agree
ment between numerical and approximate values but ac
grows, the two curves diverge.!

Continuing thec1 branch past the second turning poin

0

1

2

3

4

5

0.6 0.7 0.8 0.9 1 1.1 1.2

h

(a)

||ψ||

γ = 0.5

ψ+

ψ-

c = 0.668

h2hcr

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 5 10

c

(b)

h

γ = 0.5

had

h2

hcr

FIG. 3. ~a! The Sobolev norm of the solitary wave solution as
function of the driving strengthh. The solid and dashed lines ind
cate stable and unstable branches, respectively.~b! The pulse exis-
tence region on the (c,h) plane. Two pulse solutions,c1 andc2 ,
are born ash exceeds the valuehcr(c) depicted by the lower solid
line. The upper solid curve gives the upper boundary of thec1

pulse’s existence domain,h2(c). Also shown is the adiabatic ap
proximation to the saddle-node bifurcation curve, Eq.~33! ~dashed
line!.
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the solution adds another hump in the middle of the pu
‘‘turns back’’ again, adds another one, and so on.@See Fig.
3~a!.# A long plateau develops in the middle of the pulse, ju
like when it was continued in c. Similar to the
c-continuation, the turning points on theh axis separate re
gions of stability from regions of instability, with the insta
bility being caused by a single positive real eigenva
~which moves throughl50 at the turning points!.

From Fig. 3~b! it is clear why the saddle-node bifurcatio
point, where thec1 andc2 solutions would merge, did no
appear in Fig. 1. The reason is that Fig. 1 was plotted fo
relatively large value ofh (h50.8) whereas according t
Fig. 3~b!, a horizontal lineh5const withh.0.660 can have
no intersections with the saddle-node curvehcr(c). ~Here all
the numbers are forg50.5.! The same Fig. 3~b! explains
what seemed to be a discrepancy between the adia
analysis and the numerical continuation of the solitonc2 in
c. The numerical result that seemed to contradict the adia
ics was that forh50.8, c2 could be continued withou
bounds. It is now obvious from Fig. 3~b! that the unbounded
continuation is only possible forh greater than 0.660. Con
tinuing thec2 soliton to positivec for h smallerthan 0.660,
the branch turns back~already as thec1 pulse! after hitting
the lower solid curve in Fig. 3~b!. Therefore, the pattern
arising for h close tog actually is in qualitative agreemen
with the adiabatic analysis, which was expected to be v
precisely for smallc or, equivalently, for smallh2g differ-
ences.

VII. CONCLUDING REMARKS

In this paper we studied a cubic complex Ginzbu
Landau equation in which linear losses and diffusion
compensated by the linear parametric drive. The nonlin
term in the equation was taken to be purely conservative

There are three stationary homogeneous solutions to
~4!, and we have shown that thec50 solution is stable if
h<A11g2, as long asc>0. This stability condition coin-
cides with the corresponding condition for the nonline
Schrödinger case~i.e., for c50). On the other hand, th
stability properties of thenonzerohomogeneous solutions ar
not the same as in thec50 case. Indeed, unlike forc50,
there is a stable flat nonzero solutionc5C1

(0) for sufficiently
large diffusion coefficients,c>c2(h,g).

Having established the persistence of the NLS solit
c1 and c2 for small nonzeroc, we continued them inc
numerically. The continuation of the solitonc1 yields a se-
,
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quence of pulselike solutions, separated by turning poi
with increasing number of humps. The stability of these
lutions changes at each turning point, so that stable mu
hump solutions coexist with unstable ones. It is fitting to no
here that the multistability of multipulse solutions isnot ob-
served in the Schro¨dinger limit where only the two-soliton
complex was found to be stable@9#. As c→clim , where
clim5clim(h,g), the solution takes the form of a long platea
~an interval of the stable backgroundC1

(0)) sandwiched be-
tween two fronts.

We also performed the continuation inh, for the fixedc.
For eachc.0, two localized solutions are born in a saddl
node bifurcation ash exceeds a threshold value.~We ob-
tained an analytic formula for the threshold in the adiaba
approximation; it is in agreement with the numerical resu
for small c.! The subsequent continuation gives rise to
sequence of coexisting stable multihump solutions culmin
ing in a bound state of two widely separated fronts.

Solitary pulses in the form of long shelves~plateaus! can
allow easy experimental observation in physical systems
scribed by our model. In particular, they may be employed
a natural basis for the non-return-to-zero~NRZ! format of
the data transmission in optical telecommunications. In
NRZ format, the 1 and 0 bits are coded, respectively,
sending or withholding the signal within a standard time sl

A string of several 1’s looks as a long uniform pulse of
essentially arbitrary length. The stability of such pulses
crucial to maintain the fixed shape of the long array of 1
and to prevent theintersymbol interference, i.e., the blurring
of empty intervals between such strings, which repres
~strings of! 0’s. ~See, e.g., Ref.@29# and references therein.!
In the case of lasers, which can also be described by
present model@20#, the possibility of the generation of stab
long pulses of arbitrary duration, i.e., an effectivetunability
of the output, is an essential advantage too.
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